

# Hybrid Energy Lab-System

1.2 kW Fuel Cell and Battery Hybrid System for Laboratory Applications



ACADEMIA OFFERING RESEARCH SOLUTIONS



A Fuel Cell – Battery Hybrid System that enables users to understand & research individual components and system behavior under various hybrid set-ups. Designed as a lab to support engineering courses focussed on the application of fuel cells, battery technology, hybrid systems, energy management and energy storage. It is critical for today's engineering students to have a deeper understanding of the application of electrical chemical energy conversion & storage. Especially as it relates to fast growing markets of stationary, portable and mobile hybrid power systems.

#### Ideal for Courses Focused On

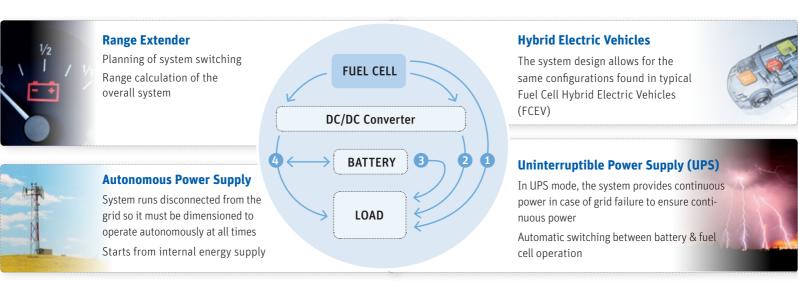
- » Battery Technology (Modeling)
- » Battery Systems & Control
- » Applied Fuel Cell Technology
- » Battery- Fuel Cell Hybrids
- » Electrochemical Energy Storage & Conversion
- » Renewable Energy Storage
- » Electrical & Hybrid Vehicles (HEV/FCEV)
- » Backup Power Systems
- » Micro-Grids & Smart Grids

The system provides an experimental platform for advanced training to applied research:

- » Fuel Cell Battery Hybrids
- » Battery Charging/Discharging
- » Battery & Fuel Cell Model Analysis & Comparison
- » Calculation & Evaluation of Electrical Characteristics
- » Energy Management
- » User Developed Control Algorithms
- » Validation of Models Against a Real System
- » Hybrid Power System Set-ups: UPS, Autonomous Power Supply, Back-up Power System, HEV/FCEV

# Hybrid Energy Lab-System

1.2 kW Fuel Cell and Battery Hybrid System for Laboratory Applications

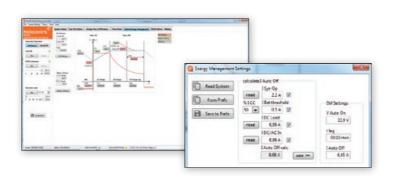

# System Overview

The Hybrid Energy Lab-System is a comprehensive learning and research system for hybrid energy systems with a focus on batteries and fuel cells. Designed specifically for use in universities and colleges, it offers a wide range of theoretical and practical applications for the design criteria of hybrid systems with batteries and fuel cells.



## Realistic Application of Hybrid Systems

The Hybrid Energy Lab-system enables various hybrid setups for Applied Research of battery and fuel cell / diesel generator systems:




### Battery Modeling & Data Fitting

The battery can be further analyzed by fitting a detailed battery model to the data. The obtained parameters characterize the dynamic behaviour of the battery and give insight into the electrochemical processes.

This analysis task is seamlessly integrated into the Application Software.

Built-In and user-provided batteries can be analyzed and compared.



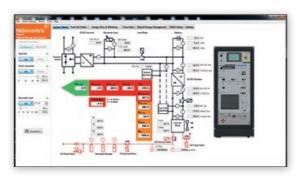
# Battery Modeling

Battery Data-Fitting

## Hybrid Energy Management

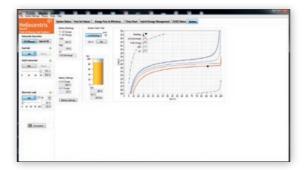
The Hybrid Energy Management allows a detailed real life investigation of the hybrid energy management algorithm in different phases. The connection to different sources and loads are fully configurable and allows a transparent exploration of the process.

## Application Programming Interface (API)


The interface provides a simple and convenient way for the system to control data and to integrate it with other software solutions.

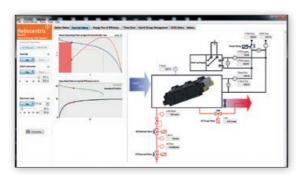
The exchange process of data and content between different software solutions is possible and a LabView programming example from Heliocentris is also included.




# Software Functionality

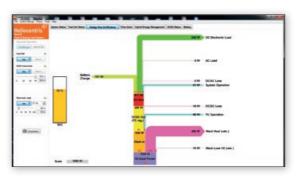
Our LabVIEW™ based software allows users to control the hardware, system operation & set-up, gather & display data in various formats and perform data fitting for research and experimentation. Users can validate their models against a real system by using their control algorithms to set system parameters and then run real-time simulations. Acquired data can be exported to external applications such as MATLAB™ & MS Excel and many more.




#### System & Sensor Overview

» Extensive data points for: DC/AC Inverter, E-Load, DC/DC Converter, Fuel Cell, H2 Flow/ Valves/Storage, Batteries, DC/AC Bus




#### Battery Charging Discharging Behavior

» Real-time display of battery operation based on the battery model (Charge & Discharge Curves), Readings V Bat/I Bat, Settings V CV/CC, SoC



#### Fuel Cell & H., System

- » Real-time display of all relevant fuel cell & H2 data points: Stack Temp. Start-up Supply (I/V), FCM Output (I/V), H, Flow & Pressure, Fan
- » Built-in capabilities for direct comparison to a simulated back-up diesel generator



#### Energy Flow & Efficiency Levels

» Real-Time Sankey diagram of overall system input/ output power & battery charging (SoC)



#### DC/DC Converter

» Real time display of all relevant data: input & output characteristic of the DC/DC (V, I, P), Step-Up/Down, Battery readings (CV, CC, V Bat, I Bat

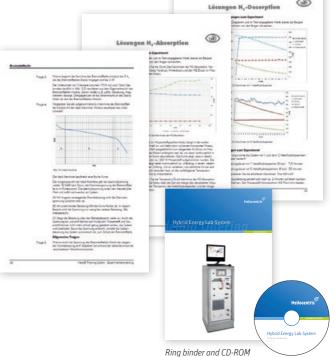


#### Real-Time Graphing

- » Plotting of component parameters and measured values
- » Measured values are freely configurable
- » Adjustable data acquisition scales
- » Simple highlighting of curves by clicking

## Instruction and Experimentation Material

Extensive training material assists the teacher in creating a more interactive and specialized classroom experience. Prepared experiments and software-supported exercises simplify the use of the system.


Experiments

#### **Experimentation manual with:**

- » Learning goals and content
  - Instructions for the execution of experiments
  - Topic-specific questions and sample answers
- » Evaluation templates
- » Detailed operating manual

#### **Experiments including:**

- » System design for special applications: Backup, Emergency power supply (UPS), Autonomous power supply, Boost, range extender
- » Examination of the operating behavior of: Battery module, Fuel cell module, DC converter
- » Determination of the efficiency and energy conversion
- » Examination of load step changes of up to 1.5 kW
- » Generation of characteristic curves





#### Scope of Delivery of the Hybrid Energy Lab-System

- » Fuel cell module
- » Power management module
- » Electronic load module
- » Battery module
- » H<sub>2</sub> storage module
- » System control module
- » Measurement and experimentation software
- » All-in-one PC incl. keyboard, mouse
- » Instruction and experimentation material

Hybrid Energy Lab-System Item No. **793**\*

## Accessories for Hydrogen Supply

#### Solar Hydrogen Trainer

Combine the Hybrid Energy Lab-System with the Solar Hydrogen Trainer to build your own autarkic Power-to-Gas Lab.



## Hydrogen Generator HG60

Produce high-purity hydrogen for the direct operation of the Fuel Cell Trainer or for refilling the metal hydride canisters.

| HG60             | ArtNr. 1302 |
|------------------|-------------|
| Accessories      |             |
| HG series input/ | ArtNr. 1801 |
| output board     |             |



#### H, Connection Kit

Pressure reducer for 200 bar standard compressed gas cylinders for the refilling of the metal hydride canister.

15 bar H, Connection Kit Art.-Nr. 736

#### Hydrogen Detector

The portable hydrogen warning device (0 – 100 ppm) for monitoring of the workplace in combination with a leak detection liquid assure safety when working with hydrogen.



H<sub>2</sub>-Detector Art.-Nr. 731

<sup>\*</sup> Only available in combination with a hydrogen supply from Heliocentris

# Technical Data

| Hybrid Energy Lab-System                          |                                                         |  |
|---------------------------------------------------|---------------------------------------------------------|--|
| Dimensions (B $\times$ H $\times$ T)              | 520 × 1330 × 600 mm                                     |  |
| Weight approx.                                    | 200 kg                                                  |  |
| Permissible environ-<br>mental temperature during | +5 +35 °C                                               |  |
| Connection standards                              | DIN, CGA, BS                                            |  |
| Mains connection                                  | 230 V <sub>AC</sub> (50 Hz), 115 V <sub>AC</sub> (60Hz) |  |
| Communication interface                           | Ethernet                                                |  |
| Fuel Cell Module                                  |                                                         |  |
| Fuel Cell System                                  |                                                         |  |
| Rated output                                      | 1200 W @ 5 25 °C                                        |  |
| Rated current                                     | 60 A <sub>DC</sub> max.                                 |  |
| Operating voltage                                 | 18 36 V <sub>DC</sub>                                   |  |
| Maximum hydrogen consumption                      | 15 NI/min                                               |  |
| Hydrogen purity for operation                     | min. 4.0                                                |  |
| Permissible H <sub>2</sub> inlet pressure         | 1 15 bar                                                |  |
| H <sub>2</sub> Flow Meter                         |                                                         |  |
| Measuring range                                   | 0.83 25 Nl/min                                          |  |
| Measuring accuracy                                | ± 1.5 % from the end value                              |  |
| H <sub>2</sub> Sensor                             |                                                         |  |
| Sensor standard range                             | 0.00 1.00 Vol. % H <sub>2</sub>                         |  |
| Power-Management-Modul                            |                                                         |  |
| DC Converter with Integrated Load Regulator       |                                                         |  |
| Max. output power                                 | 1500 W                                                  |  |
| Max. output current                               | 55 A <sub>DC</sub>                                      |  |
| Rated output voltage                              | 24 V <sub>DC</sub>                                      |  |
| Output voltage range                              | 21 30 V <sub>DC</sub>                                   |  |
| Max. input current                                | 60 A <sub>DC</sub>                                      |  |
| Input voltage range                               | 18 36 V <sub>DC</sub>                                   |  |
| Efficiency                                        | 96 %                                                    |  |

| Inverter                                         |                                                                                   |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Continuous output power                          | 1500 W <sub>AC</sub>                                                              |  |  |
| Inlet voltage                                    | 21 30 V <sub>DC</sub>                                                             |  |  |
| Output voltage                                   | 230 V <sub>AC</sub> (50 Hz), 115 V <sub>AC</sub> (60Hz)                           |  |  |
| Output signal form pure                          | Reiner Sinus (THD < 3 %)                                                          |  |  |
| Efficiency                                       | 91/93 % (110/230 V)                                                               |  |  |
| Electronic Load Module                           |                                                                                   |  |  |
| Max. continuous power                            | 2400 W                                                                            |  |  |
| DC load current                                  | 1 100 A <sub>DC</sub>                                                             |  |  |
| DC load voltage                                  | 1 160 V <sub>DC</sub>                                                             |  |  |
| Load resistance                                  | 0.02 10 Ω                                                                         |  |  |
| Battery Module                                   |                                                                                   |  |  |
| Battery set 1                                    | lead-acid, 24 V, (2 x 12 V), 7,2 Ah                                               |  |  |
| Battery set 2                                    | lead-acid, 24 V, (2 x 12 V), 18 Ah                                                |  |  |
| Safety elements                                  | 30 A, 80 A                                                                        |  |  |
| H <sub>2</sub> Storage Module                    |                                                                                   |  |  |
| Hydrogen manometer                               | 0 25 bar                                                                          |  |  |
| Safety elements                                  | 3 x temperature sensors, pressure relief valve, hydrogen safety switch, manometer |  |  |
| Metal Hydride Canisters                          |                                                                                   |  |  |
| Storage capacity                                 | 3x 600 Nl @ 15 bar, 20°C                                                          |  |  |
| All-in-one PC and System Control Module          |                                                                                   |  |  |
| All-in-one PC, keyboard, mouse and user software |                                                                                   |  |  |
| System control with touchscr                     | System control with touchscreen for measured value indication and adjustment      |  |  |

#### Nexa® Integration System

From theory to applied application. Easy integration into various systems:

1200W Fuel Cell Module Item No. 1911

Nexa® DC1200 Converter

DC1200 DC converter 24/48 V Item No. 1610/1611





#### Heliocentris Academia International GmbH

Rudower Chaussee 30 12489 Berlin, Allemagne Tel. + 49 (0) 30 340 601 600 www.heliocentrisacademia.com

@ Heliocentris Academia GmbH 2016. Subject to modification.